2019. 11. 27. 14:15 - 2019. 11. 27. 15:45
ELTE lágymányosi campus, déli épület (1117 Budapest, Pázmány Péter s.1/C), 3-716 terem
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

We study the growth of r_k, the k-th Radon number, in convexity spaces. If r_2 is finite, we present an improved upper bound on r_k. We also investigate Eckhoff's conjecture on the growth of r_k, which has been proven to be true when r_2 = 3. However, when r_2 = 4, we construct a family of convexity spaces where Echkoff's conjecture fails. 

 

bibliography:

B. Bukh: Radon partitions in convexity spaces, arXiv.