2021. 11. 22. 10:15 - 2021. 11. 22. 11:15
Rényi, Nagyterem + Zoom
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Algebra szeminárium
Leírás
Abstract:
In this talk we discuss some bounds about sets avoiding certain arithmetic or geometric configurations in F_p^n (or more generally, in Z_m^n). In particular, we will consider sets avoiding right angles in F_p^n. We will also give a brief introduction of the so-called "slice rank" of tensors which plays an important role in our proofs. Our methods can also be used to bound the maximum possible size of a binary code where no two codewords have Hamming distance divisible by a fixed prime p.
Joint work with Bursics, Matolcsi and Schrettner.
https://zoom.us/j/91034438571?pwd=TlVZR0NLZ2FrbXhxNkd6bVc4b3VuQT09
Meeting ID: 910 3443 8571
Passcode: 808005