Leírás
Abstract: Let G be a group acting transitively on a finite set Ω. Then G acts on ΩxΩ component wise. Define the orbitals to be the orbits of G on ΩxΩ. The diagonal orbital is the orbital of the form ∆ = {(α, α)|α ∈ Ω}. The others are called non-diagonal orbitals. Let Γ be a non-diagonal orbital. Define an orbital graph to be the non-directed graph with vertex set Ω and edge set (α,β)∈ Γ with α,β∈ Ω. If the action of G on Ω is primitive, then all non-diagonal orbital graphs are connected. The orbital diameter of a primitive permutation group is the supremum of the diameters of its non-diagonal orbital graphs.
There has been a lot of interest in finding bounds on the orbital diameter of primitive permutation groups. In my talk I will outline some important background information and the progress made towards finding explicit bounds on the orbital diameter. In particular, I will discuss some results on the orbital diameter of the groups of simple diagonal type and their connection to the covering number of finite simple groups. I will also discuss some results for affine groups, which provides a nice connection to the representation theory of quasisimple groups.
Az előadást Zoom-on is közvetítjük:
https://us06web.zoom.us/j/89104305078?pwd=lc4LiV2rdZqmyfB5bXlQUWD7gQlJ03.1
Meeting ID: 891 0430 5078
Passcode: 030809