2021. 09. 27. 14:15 - 2021. 09. 27. 15:15
Rényi, Nagyterem + Zoom
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Összintézeti szeminárium

Leírás

The first part of the lecture deals with the problem:
Let $A = \{(i,j) \in \mathbb{Z}^2: 0 \leq i < m, 0 \leq j < n\}$ and $f: A \to \mathbb{R}$ an unknown function.
Let $D = \{(a_i,b_i)\}_{i=1}^d$ be a set of coprime integers ('directions').
Suppose all the (discrete) line sums of $f$ in the directions of $D$ are given.
Compute all functions $g : A \to \mathbb{R}$ with the same line sums as $f$.
The case $D=\{(1,0), (0,1)\}$ represents the classical case that  all row and column sums are given.

The second part indicates how a restricted number of errors in the line sums can be corrected.

Such problems are  studied in discrete tomography which in contrast to computed tomography requires only a small  number of directions.

This concerns joint work with Matthew Ceko, Lajos Hajdu and Silvia Pagani.