2025. 05. 08. 12:30 - 2025. 05. 08. 14:00
Nagyterem, Rényi Intézet
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Extremális halmazrendszerek szeminárium
Leírás
In 2010, Butler, Costello, and Graham proposed a conjecture: Let $ax + by = az$ be an equation, where $a, b$ are integers.
Denote by $R,B$ the colors red and blue, respectively.
$(i)$ If $b>a\geq 2$ and $\gcd(a, b)=1$, then the coloring that gives the minimum number of monochromatic solutions over any $2$-coloring of $[1, n]$ is $[(R^{a-1}, B)^{\frac{n}{b}},R^{(\frac{b-a}{b})n}]$.
$(ii)$ If $a>b\geq 2$ and $\gcd(a, b)=1$, then
the coloring that gives the minimum number of monochromatic solutions over
any $2$-coloring of $[1, n]$ is $[(R^{a-1}, B)^{\frac{n}{a}}]$. In this paper, we confirm this conjecture.