Description
Austrian-Hungarian Diophantine Number Theory seminar
link: https://uni-salzburg.webex.com/uni-salzburg/j.php?MTID=m8ac9a02512f2c29f1385861f47e2f179
Abstract:
For any fixed coprime positive integers a,b and c with min{a,b,c}>1, we prove that the equation a^x+b^y=c^z has at most two solutions in positive integers x,y and z, except for one specific case which exactly gives three solutions. Our result is essentially sharp in the sense that there are infinitely many examples allowing the equation to have two solutions in positive integers. From the viewpoint of a well-known generalization of Fermat's equation, it is also regarded as a 3-variable generalization of the celebrated theorem of Bennett [M.A.Bennett, On some exponential equations of S.S. Pillai, Canad. J. Math. 53(2001), no.2, 897-922] which asserts that Pillai's type equation a^x-b^y=c has at most two solutions in positive integers x and y for any fixed positive integers a,b and c with min{a,b}>1. In this talk we give a brief summary of corresponding earlier results and present the main improvements leading to this definitive result. This is a joint work with T. Miyazaki.