-
Online, Zoom webinar
-
-
-
-

Description

Abstract:

We generalize Artin-Verdier, Esnault and Wunram construction of McKay correspondence toarbitrary Gorenstein surface singularities.  The key idea is the definition and a systematic use of a degeneracymodule, which is an enhancement of the first Chern class construction via a degeneracy locus.  We study also de-formation and moduli questions.  Among our main result we quote:  a full classification of special reflexive MCMmodules on normal Gorenstein surface singularities in terms of divisorial valuations centered at the singularity,a first Chern class determination at an adequate resolution of singularities,  construction of moduli spaces ofspecial reflexive modules, a complete classification of Gorenstein normal surface singularities in representationtypes,  and  a  study  on  the  deformation  theory  of  MCM  modules  and  its  interaction  with  their  pullbacks  atresolutions.   As  a  consequence  of  the  theory  we  confirm  a  conjecture  of  Drodz,  Greuel  and  Kashuba  in  theGorenstein case.  Joint work with Agustin Romano.

 

For Zoom access please contact Andras Stipsicz (stipsicz.andras[a]renyi.hu).