-
Online, Zoom webinar
-
-
-
-
-
-

Description

CCOR Optimalizálási szeminárium


Absztrakt:
Az előadásban bemutatunk egy új belsőpontos módszert, amely alkalmas elégséges lineáris komplementaritási feladatok megoldására.
A belsőpontos algoritmusok egyik csoportosítása szerint beszélhetünk rövid- és hosszúlépéses módszerekről. A hosszúlépéses változatok gyakorlatban hatékonyabbak, azonban elméleti komplexitásuk sokáig elmaradt a rövidlépéses algoritmusokétól. Ez alól kivételt képez például Ai és Zhang 2005-ös módszere.
Az új algoritmus az Ai-Zhang-féle megközelítést alkalmazza, és egy, az általuk bevezetetthez hasonló széles környezetet. Felhasználjuk továbbá a Darvay Zsolt által bevezetett algebrailag ekvivalens átalakítások módszerét, a φ(t)=t-√t függvény alkalmazásával.
Megmutatjuk, hogy az algoritmus konvergens, és komplexitása megegyezik a jelenlegi ismert legjobb lineáris komplementaritási feladatokra adott rövidlépéses módszerek komplexitásával.
Az algoritmust Matlabban implementáltuk. Az előadás utolsó részében bemutatjuk az így kapott numerikus eredményeinket.

Társszerző: E.-Nagy Marianna


Aki szeretne csatlakozni, kérem, hogy e-mailben jelezze Varga Anitánál (vanita@math.bme.hu).